EVALUATION OF THE STRESS-STRAIN STATE OF HALF-SPACE WITH CYLINDRICAL CAVITIES

V. Yu. Miroshnikov

Анотація


A three-dimensional problem was solved in the theory of elasticity for an elastic uniform halfspace with cylindrical cavities parallel to each another and the half-space boundary. Stresses rapidly decaying to zero at big distances from the origin of coordinates are specified on the boundaries of cylindrical cavities and on the half-space boundary. The problem of solving such problems is topical. It is encountered in practice and solved using approximate methods. The approach used herein yields solutions of the stated problem with an a priori specified accuracy depending on the system order. In contrast to publications referred to in the paper, the focus, apart from another approach, was on analysing the stress state of half-space to study the mutual influence of cylindrical cavities and of the cavities with half-space boundary. The problem was solved using the generalised Fourier method for Lame equations in cylindrical coordinates linked to cylinders and Cartesian coordinates linked to half-space. For transition between basic solutions of Lame’s equations, special formulas were used for transition between local cylindrical systems of coordinates and between the Cartesian and cylindrical systems of coordinates. The truncation method was used to solve infinite systems of linear algebraic equations to which the problem was reduced. This yielded displacements and stresses in an elastic body. The numerical results were derived for the case of half-space and two cylinders under a load applied to the half-space boundary. Separate computations were performed for a load applied to the surface of the cylindrical cavity. In both cases the analysis of the stress-strain state indicates that space weakening due to cylindrical cavities or the half-space boundary gives rise to extremal stresses in these sites. The method can also be used for other boundary conditions.

Ключові слова


cylindrical cavities in half-space; Lame’s equations; generalised Fourier method; first basic problem

Повний текст:

PDF (English)

Посилання


Miroshnikov, V.Yu. The first basic problem in the theory of elasticity in space with N parallel round cylindrical cavities [Text] / V.Yu. Miroshnikov // Problemy Mashynostroyenia [Mechanical Engineering Problems]. Kharkiv. – 2017.– Vol. 20. – No. 4. – P. 45 − 52.

Nikolayev, A.G. The generalised Fourier method for spatial problems in the theory of elasticity [Text] / A.G. Nikolayev, V.S. Protsenko. –N.Ye. Zhukovskii National Aerospace University «KhAI», Kharkiv, 2011. – 344 p.

Nikolayev, A.G. Apparatus and applications of the generalised Fourier method for transverse-isotropic bodies bounded by a plane and a paraboloid of revolution [Text] / A.G. Nikolayev, Yu.A. Shcherbakova // Mat. Metody ta Fiz.-Mekh. Polia [Math. Methods and

Phys.-Mech. of a Field]. – 2009. – Vol. 52. – No. 3. – P. 160 − 169.

Nikolayev, A.G. Substantiation of the Fourier method in asymmetrical problems in the theory of elasticity for transverse-isotropic bodies bounded by a paraboloid surface [Text] / A A.G. Nikolayev, Yu.A. Shcherbakova // Open informational and computer-aided integrated

technologies: Proceedings. N.Ye. Zhukovskii National Aerospace University "KhAI", Kharkiv.– 2010. – Iss. 48. – P. 180 − 190.

Nikolayev, A.G. Action of a lumped force on transverse-isotropic half-space with a paraboloid containment [Text] /A A.G. Nikolayev, A.Yu. Shcherbakova, A.I. Yukhno //Design and production of aircraft constructions. Proceedings N.Ye. Zhukovskii National Aerospace

University "KhAI". Kharkiv. NAKU. – 2006. – Iss. 2(45). – P. 47 − 51.

Nikolayev, A.G. Solution of the first axisymmetric thermal elasticity boundary value problem for a transverse-isotropic half-space with a spheroidal cavity [Text] / A.G. Nikolayev, Ye.M. Orlov // Problemy Obchysliuvalnoi Mekhaniky i Mitsnosti Konstruktsii [Computational

Mechanics and Strength of Constructions]. O. Honchara Dnipropetrovsk National University. Dnipro.– 2012. – Iss. 20. – P. 253− 259.

Protsenko, V.S. Application of the generalised Fourier method to solving the first basic problem in the theory of elasticity in half-space with a cylindrical cavity [Text] / V.S. Protsenko, N.A. Ukrainets // Visnyk Zaporizhskoho Natsional'noho Universytetu [Bull. of Zaporizhia

National University]. Zaporizhia. – 2015. – Iss. 2. – P. 193 − 202.

Shcherbakova, Yu.A. Comparative analysis of the stress-strain state of multiplyconnected transverse-isotropic bodies with different elastic characteristics [Text] / Yu.A. Shcherbakova, Ye.M. Shekhvatova // Visnyk Zaporizhskoho Natsional'noho Universytetu [Bull. of Zaporizhia National University]. Zaporizhia. – 2015. – Iss. 2. – P. 253 − 261.

Miroshnikov, V.Yu. On computation of the stress-strain state of a space weakened by a system of parallel circular cylindrical cavities with different boundary conditions [Text] / V. Yu. Miroshnikov//4th International Conference Science and Practice: a New Level of Integration in the Modern World. Conf. Proceedings. Scope Academic House. − Sheffield, UK. – 2017. − P. 77− 83.


Посилання

  • Поки немає зовнішніх посилань.



Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:

      


Адреса редколегії: 49050, Україна, Дніпропетровськ, Дніпропетровський національний університет імені Олеся Гончара (ДНУ), вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Гоман О.Г. 

Телефон: (056) 776-82-05

email: v01_klim@mail.ru

www.dnu.dp.ua


Free counters! Яндекс.Метрика

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


Open Science in Ukraine - website development